Outlier rejection in high-dimensional deformable models
نویسندگان
چکیده
Deformable model tracking is a powerful methodology that allows us to track the evolution of high-dimensional parameter vectors from uncalibrated monocular video sequences. The core of the approach consists of using low-level vision algorithms, such as edge trackers or optical flow, to collect a large number of 2D displacements, or motion measurements, at selected model points and mapping them into 3D space with the model Jacobians. However, the low-level algorithms are prone to errors and outliers, which can skew the entire tracking procedure if left unchecked. There are several known techniques in the literature, such as RANSAC, that can find and reject outliers. Unfortunately, these approaches are not easily mapped into the deformable model tracking framework, where there is no closed-form algebraic mapping from samples to the underlying parameter space. In this paper, we present three simple, yet effective ways to find the outliers. We validate and compare these approaches in an 11parameter deformable face tracking application against ground truth data. q 2006 Elsevier B.V. All rights reserved.
منابع مشابه
In Defence of RANSAC for Outlier Rejection in Deformable Registration
This paper concerns the robust estimation of non-rigid deformations from feature correspondences. We advance the surprising view that for many realistic physical deformations, the error of the mismatches (outliers) usually dwarfs the effects of the curvature of the manifold on which the correct matches (inliers) lie, to the extent that one can tightly enclose the manifold within the error bound...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملNovelty Detection Model Selection Using Volume Estimation
In this paper, we present an approach to selecting models for novelty (outlier) detection. Our approach minimizes the risk of accepting outliers at a fixed normal rejection rate, under the assumption that the distribution of abnormal (outlier) data is uniformly distributed in some bounded region of the input space. This risk is minimized by selecting the model with the smallest volume acceptanc...
متن کاملA finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection
Model-based approaches and in particular finite mixture models are widely used for data clustering which is a crucial step in several applications of practical importance. Indeed, many pattern recognition, computer vision and image processing applications can be approached as feature space clustering problems. For complex high-dimensional data, however, the use of these approaches presents seve...
متن کاملTheoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers
In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable solids is presented, and governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed using the principle of virtua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Image Vision Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 2007